DEVEI OHMMW’01~ A COMMERCIALLY VIABLE, MODULAR
AUTONOMOUS ROBOTIC SYSTEMSFOR CONVERTING
ANY VEHICLE TO Al 'TONOMOUS CONTROL.,

David W. parish
Robert D. Grabbe
Omnitech Robotics, Inc.
Englewood, CO. 80110

Dr. Neville 1. Marzwell
Jet I'repulsion Laboratory
California Institute of’ Technology
Pasadena , CA. 91109

ABSTRACT

A Modular Autonomous Raobotic System (MARS), consisting of a modular autonomous
vehicle control system that can bc retrofit on to any vehicle to convert it to autonomous
control, and support a modular payload for multiple applications is being developed. The
MARS design is scalable, reconfigurable, and cost effective due to the usc of modern open
system architecture design methodologies, including serial control bus technology to simplify
system wiring and enhance scalability. The design is augmented with modular, object oriented
(C4+4) software implementing a hierarchy of five levels of control including teleoperated,
continuous guidepath following, periodic guidepath following, absolute position autonomous
navigation and relative position autonomous navigation. The autonomous vehicle control
system design uses a stochastic map, and cascaded Kalman filter to fuse numerous position
sensor groups, including an inertial sensor suite, a differential GPS sensor, severa landmark
detection sensors, and a cost effective, random access 3600 scanning laser rangefinder, or
I ADAR. TheLADAR aso doubles as a high precision obstacle detection sensor. operational
capability of a rapid prototype ATV has been demonstrated including the 1.AIDAR, machine
vision, and inertial sensor suite based dead-reckoning. The present effort is focused on
producing a system that is commercially viable for routine autonomous patrolling of known,
semi-structured environments, like environmental monitoring of chemical and petroleum
refineries, exterior physical security and surveillance, perimeter patrolling, and intra-facility
transport applications.

INTRODUCTION

Numerous autonomous robotic vehicles and control systems have been developed in recent
years, by universities, government labs, and commercial companies. Some of these designs
have found commercia applications, although broad based commercial application and market
acceptance has been illusive for all but the simplest approaches like Automated Guided
Vehicles (AGVs). Based on market analysis, applications for autonomous robotic vehicles are
apparently plentiful, if a satisfactory system and life-cycle cost effectiveness can bc met. We
hypothesize that with a properly modularized, scaleable, and reconfigurable autonomous

vehicle control system architecture, that a commercially viable system can be obtained,
providing sufficient cost effectivencss and return on investment to justify substantially
increased market acceptance for a variety of applications. This paper will introduce our
technical approach for producing such a system, followed by an overview of some of the
candidate applications targeted.

TECHNICAL APPROACH

“I-hc fundamental basis of our approach for the development of the “Modular Autonomous
Robotic System" or MARS.is based on recognizing that it is possible, and highly desirable, 1o
separate the vehicle being controlled from the autonomous control system itself. This allows
the use of any vchicle, whether general purpose or specially built, and by subscquently adding
on a set of sensors, actuators, and “black box” electronics and control computers, an intelligent
autonomous robotic vehicle canbe produced for virtually any application. This approach
forces a gencralized architecture, and limits the use. of simplifications for some applications.
However, it is anticipated that the economics of scale and extra flexibility provided by having a
general approach will ultimately be more advantageous. Modularizing an autonomous robotic
vehicle control system requires consideration of various aspects, including:

computing hardware, both centralized and distributed
actuation hardware

sensing hardware

communication hardware and software

control algorithms and software

software infrastructure

The scope of these technologies is extensive, and creating an architecture that handles all
aspects can seem overwhelming. However recognizing that the architecture will ultimately be
embodied as one or more physical instantiations, wc approached the problem by starting with a
formal product specification sheet for both a low end indoor AGV-like autonomous robotic
vehicle, and a high end outdoor security and surveillance autonomous robotic vehicle. These
two designs were then gencralized, and the common functions and interfaces defined, to provide
ascalcable architecture that could meet both design targets cost effectively. Wc will describe
some of the preliminary approaches taken and results of this effort, by describing the hardware
architecture first, followed by the software architecture.

MARS Hardware Architecture

Figure 1 shows an overview of our hardware architecture for the MARS development. Onc of
the main features of this hardware architecture is the usc of a serial control bus for acquiring
sensor information and controlling actuators. This “sensor / actuator bus’ will now be
introduced.

]
Touth Screen 1)

Touch Serven !

Ccnlml Conlrollcr -

,’rsni‘ ISAPCIOL, SEME i ™~
(L1 Keyboard snd RF Trans- ,
CPU - 30"’86“(76 Trackball » teiver
[ucamal J [’

I 7 [

HD, FD, Paraliet B0, {d) ||| OPP¥ Disk Modem

Serial 1O et ——— | Hard Disk Las

™ $-232

LCD Display Driver Laser

F=1 Rangelinder ‘

‘B TO remine tenninal

H Y

(T i
CAN & SERCOS bus /0 L |

SERCOQ Actu-
L b
i

¥
Ethemet 10 e To X Windows teeminal or ath. !
ermet backbonc)
1 !
Video Framegrabber and e !
' 3

Coprocessor DSP | Vidoo Camcrals)

e e n e '_..,__« -

l ligh Integration ThrottleTrake Aciuntor
%ﬁmh Integration Steering Aciuntor

High Integration Shifter Actuator

CAN Bus

Rotary Laser Scanner

GGMroi

Raster Laser Scannce ; , Struetured light source

Pan/T'ih Unit lnclinometer(s)

=

Figure |: Overview of the MARS Hard

Digital Voice Generation 10

! Video Mux RF triangulation RX
]
“'j Video Camern Controls Short eange RF 1aprender
1:[:_] Point Laser Ranpe Finder " Long ranpe RE top rend [

<

Infrared {IR) Proxintity Sensor \

\

|
!

Microwave Proxinity Senar
Capacitive Proximity Sensor
Acaustic Areay Sensor/Contral
Microphonc/Audio Scnsor/

Haromeiric Altimeier

-

LtT:] Dillercntial GPS Recciver Inertial Measureaent Unit Windspeed Sensor

;i] Fluxpate Compass Yideo Cassetic Recorder Tomperatore Scnsor

. "] Fluxgate Cotnpass/Rate Gyro Robolic Manipulatoe/Gripper Foree/Torque Sensor

“Lt‘] Wihee! encoder (odomeicr) Salety Duripers cle.

:I’J Dar CodeReader Safety Radio cte.

~=7 Magaetic Tape Reader Vehick State Sensor ol
~T *, Oplical Tape Reader [: Ultrasonic Pruxiniity Amyji cic.

’I"] Radar Velocimeter [:I:"J Ultrasonic Proximity E:r“j clc, JJ
A N

vare Architecture

Serial Control Bus ‘1’ethnology

The concept of ascaleable controller bus has been developed to increase the level of integration
involved in embedded controller applications. Specifically, by converting from a parallel
hardwired electrical interconnection approach to a distributed serial bus interconnection
approach, significant savings in wiring and other raw materials, and installation costs can be
gained.

The serial bus interface approach to embedded controls has been spear-headed by major
automotive manufacturers to reduce in-vehicle wiring cost and size for ncw automobiles, for the
control of electric windows, lights, accessories, and similar items. The primary automotive bus
standard has been Controller Area Network, or CAN, which has been promoted by Bosch and
other major manufacturers.

CAN interface chips arc now available from Intel, Motorola, Phillips, Signetics and others, and
the application of this approach is accelerating. These hardwarc components provide the
physical and data layer functionality, but lack a standardized application level protocol for
interoperable communications. Some work at standardization of the 0S1 1SO level 7
application protocol for the CAN bus has been conducted, and Omnitech Robotics is currently
active 1 this area. Omnitech Robotics has recently completed the development of it's first
CAN bus interface product, called CANAMP. CANAMP provides the following features:

. Networkable motion control
.600 watt brush motor servo amplifier
32 hit] >SP motion controller
.Microcontroller with BASIC interpreter
.1 Mbaud CAN interface (1SO/D1S11898)
.Digital amplifier parameter setting
.8analog inputs, 10 bit resolution
.6 digital inputs, 2 digital outputs
.optional analog tachometer stabilization
A photograph of a CANAMP is shown in Figure 2.

nigh integration Actuators

High integration actuators refers to a design approach where the servo actuator is packaged
with the necessary control components into a complete stand-alone unit. Specifically these
units typically incorporate a motor, transmission device, feedback element(s), power amplifier,
and logic control ler with interface in a single hardware package.

The advantage of using high integration actuators include the ability to completely specify the
resulting actuator’s performance parameters, reduction in the total system weight, size and
volume duc to the elimination or minimalization of ancillary connectors, cables, etc., and the
unit is convenient to usc, mount, test, and replace.

Figure 2. Photograph of CANAMP

The concept of high integration actuators is not new, in fact it has been applied to acrospace
type applications for many years, due to these applications premium on size, weight, volume,
and performance. It isnewto main-stream automation applications however. Figure3

illustrates an overview of high integration actuators developed by Omnitech using the
CANAMP,

Figure 3.1'11 otograph of the High Integration Actuator Developed by Omnitech
Robotics, Inc.

MARSSOFTWARE ARCHITECTURE
Architecture for Configuration Management

The vision of thiswork is a development architecture that establishes and supports a managed
information repository of modular hardware and software elements that can beinstalled into
Unmanned Ground Vehicle (UGV) systems.

Figure 4 shows an overview of the combination] of tools and methods to accomplish a
configuration management architecture. Configuration Management will maintain documented
software source code and documented hardware configuration modules available al the design,
analysis, and implementation levels of system development. This would reduce the amount of
re-engineering and enhance the interoperability of teleoperated / semi-autonomous Systems.

[Friotocol Standads

[|
l Revisionoon ol)
Stadards Keviews
Systen Anadysis, Desigr), Kequire

ments, Problern Staternenit, or Pioposa T ad
Level oprment

Ope) Fonrnat desaription of Design
Hojedt mdDescription 01 Configura
tire, StandadsConfonnaicel evel.

Deperdet Bged Schedute
Hardw arelSoftw ae

7* ——— [BadwaeSd.edule] Softw are Schedule:
R L= — -

OMT or SA

T OvjeaModding

‘Hadwae T T Soltwaeé
Acooumts for all Aocounts for
systan corpo- al abstract data
Tienits _entities.

__________ DynavicModd | Froi eot Fuild

Hadwae Satwae Ativiges
Traechadware Eventflow dia

intesactions, gravs.
opedmgsoema- | |
- Fumoiond Modd
"Hadeae | T Sofwae

Daaflowdi @
Qravs.

- Test
_— e el — =] ;AVWWWDC; ;r;(.
Anaysis Doomment _ oum

Detevrrinie con-
straints

" Hadvae | Sofwae”

Refinemodels, Verity,iteate,

design require ad relinewod-
™ents. s,

FIGURLE 4: An Object Modeling Technique (OMT) emphasizes the naming of all physical
objects (hardware) as well as abstract (soft ware) objects allowing for early scheduling of thc
development task.

Configuration management Will encompass the tasks of handling changes to software/ hardware
components that comprise the interface protocols that maintain intra and interoperability of
UGVs developed under a joint architecture. This includes methods for evaluating changes,
tracking changes, and keeping copies of the architecture that existed at various points in time.
The complexity of this task requires a systematic approach that is embodied in our outline of a
configuration management architecture.

Initially, our configuration Management architecture will specify and maintain a basis set of
protocol standards, software and hardware, available for the usc of achieving downwardly
compatible intra and intcroperable UGV systems.

The support for the managed information repository will consist of automated project
management tools, revision control tools, and real-time structured analysis tools such as the
Object Modeling Technique (OMT) combined to manage a joint UGV configuration
architecture.

Managed hardware elements will consist of controller networking such as the Controller Area
Network (C AN)nodes and high integration actuators to be used on the vehicles, radio
equipment, and operator control unit (OCU) equipment and standards.

Software components will consist of modularized units for communication protocols, software-
hardware interface, data elements and structures, and message formats.

Documentation of the hardware / software elements will address the intended usc, applied uses,

and reproducible test cases and results. This type of documentation would make the evaluation
of hardware / software reuse feasible.

METHODS AN1) TOOLS OVERVIEW
Operating Systems and Programming Software

The platform for system developmentwould be a real-time operating system, using
standardized OS services (like the IEEE defined POSIX 1003.1 and 1003.4 standards) such as
the LynxOS to support threading of processes for rate monotonic process organization, and the
Adaor C+1 programming language.

Structured Analysis

Structured analysis tools decompose a design task into smaller, more manageable subsystems.
The Object Modeling Technique (C)MT) developed by Rumbaugh alows for a system
decomposition based upon the objects in the system regardliess of whether they arc hardware
components or software components.

System components from a Configuration Management repository could be evaluated and
reused at this early point in the design process. Their applicability to a current system design

would be verified by the documentation giving a modul€’ s intended usc, reproducible test cases,
and systems currently using the module.

Project Management Tools

Automated time scheduling tools follow the object modeling process by incorporating the
hardware / software objects into a scheduling process.

Revision Control Software

To maintain configuration control over systems interfacing, system modules used from a
repository arc compared to the originals for changes. If the than.gcs warrant permanent
inclusion into the standardized protocols while maintaining downward compatibility with other
systems, then they arc added to the standards and given a revision number. This aspect should
not be underestimated, in fact Microsoft corporation has stated “Version control is
indispensable on team projects. It's so effective that the applications division of Microsoft has
found source code version control a major competitive advantage.” (Moore, 1992) [as cited
from Code Complete - A practical handbook of software construction]

Object Based Design Philosophy

This section provides an overview of the documentation provided by the CADRE Paradigm
Plus software’s automated OMT tool that Omnitech is currently using to define our MARS
and Standardized Telcoperation System software architecture.

Although the Paradigm Plus (PP) tool's most obvious application is to facilitate software
engineering, it is flexible and generic enough to allow defined objects to represent hardware,
software, or a combination of both. For instance, an inertial measurement unit consists of the
physica hardware as well as the data structures and routines to read the data as shown in
Figures 5 and 6.

An object might contain code and data structures that perform high level system tasks such as
task planning. This module might be software only, and only interface with other software
objects. objects may also contain code that is designed to be downloaded onto an EEPROM
and run as lower level control or monitoring software. Then the object would include both
hardware and software interfaces.

At even lower levels, other objects may represent hardware functionality such as video
equipment. The designer would be able to have the hardware object contain only
documentation describing the hardware and how it interfaces with the system, or the object
could contain code that simulates hardware behavior.

Each of these modules encapsulates data and methods (functions) used upon the data allowing
more reliable code reuse.

fhe Edr Ve — ,-,,,mj,,,p“,. Flombaugh®) Mclhnd manJOthchl.gv.m-MunnghLtvcl'ob]c |L
it e 'cw nm Diagra ﬁyn b.u)]00|B Qphms Window Help . . - I I ™ :‘
.—JE;]F;]‘:3 DDD [ﬁ"]r igh == 2ptions Window | A - SeS et L . "
L] T S M N A I A i 1
o - <{ Fobot
< ;::; L) o -:‘l) “?‘o
oot of Sanikt of sombts of onnai.d {,x': [f:) [.\,.i.
=TT] il | s A
L b L BN =)
-Inn JJI A Tibd ”:J-‘hd - it [
| LR [fw»‘»l]
N I G E e][] P x
e ["]“" ke »
[mn.[I J l J
ng o] e D] | e
[[
et e |] | -
[Botnry Laae, [Te—y [T
50 e [[| e
- - — — - - - - v

Figure 5: Sample system decomposition using OM7T demonstrates the coupling of software
and hardware during ininal analysis.

j i :‘_‘;A_—-D_gf_fg_gg ﬁgum-hnus' W Meth 6d - iars _10!?19}”.’11!,-@_&!99 High Level Obe
ur ingran mbay ools uons in ow e -
DMECE o e —— e
| | I |] I] l
[nooo{t l
[e i
Son ,J
o -] [.:L
] | e e [:i*. [.. L] ey -
= 5 =) =]] |
Pesta e [Wj [:‘I
| =) [|
= “-‘;.j [oen] [*-;,;' F_;_i
' LT
=] o || e]| L
- D)
wl | - [f —n e m.w.,l...r.__mﬁ S

Figure 6: Sample system decomposition using OMT demonstrates the coupling of sefiware
and hardware during initial analysis.

Reusability of Code

Steve McConnel notes that “NASA’s Software Enginceing 1aboratory studied ten projects that
pursued reuse aggressively (McGarry, Waligora, and McDermott, 1989). In both the object-
based and the functionally oriented approaches, the initial projects weren’t able to take much of
their code from previous projects because previous projects hadn’'t established a sufficient data
base. Subsequently, the projects that used functional design werc able to take about 35 percent
of their code from previous projects. Projects that used an object-basccl approach [the approach
we recommend] were able to take more than 70 percent of their code from previous projects..”

[as cited from Code Complete] - A practical handbook of software construction]
Dynamic Modeling Documentation
One of several examples of the documentation provided by OMT, the state diagram in Figure 7

shows how events arc traced through a system and provides supporting documentation for the
intended usc of apiece of software or hardware.

___Paradigm Plus: Rumbsugh M Nﬂhnd :\m [State Dingram« Clags ATMState DI 1=
j[le “Lait Tyiew CHun mee !_'w_"_l_rRymbuugh Tools Options Window Help — -
0 _J_J@E"_LJU |
] [-1] [1 | | | |

ASwwe Dlagrem f.ows bhasums halar e tmeybe
I and hiagh wha \punmd;«ld\mwuu«
This Diugram shows 38w chargas brduss ATH

[]
l buancs 'w]
(i Scmes - ’Q‘ gt pass "?\[ﬁ [ep—

sckapioy muin e i p puirenet {_ e vardy scomet D
\bsacat[wumach b

T /Q_:::::w))

Mlptn:j o T
; Wk o ma ek St acooud
i 1]
S, oy .
?m Coscal w‘ @, et soo0w
N b
s i 4 ~y
o e
S -
@ gt i
- > o m,n“
/,!*'“" -I;-
i cash A |
A hdhse
=
_
bt
e PO
G""""‘“‘—) [T, g— ':@pﬂﬂuw__), ,,,,,,

Figure 7: The dynamic modeling step in OMT provides event tracing between objects_further
linking the interaction between software and hardware with the use of state diagrams.

10

Functional System Analysis

The functional model consists of data flow diagrams and constraints as shown in Figure&. It
identifies input and output values and defines what cach function dots. Many structural
analysis mecthods include this type of analysis, making a variety of methodologies
interchangeable with the usc of OMT. While a repository of software / hardware objects, such
as communication protocols, would bc documented and organized under OMT, this would not
preclude other analytical methods from taking advantage of the modules documented with
OMT.

1] 1] l [T i [] [] 1
Yot T b 7 Lewat
Pharer _Achatm Y]
How Toak .‘....BZ......
- / Oocupeacy Bt
o el /
- ¥ P v oo boe
Do boe ¥
o)
Ot toobecda s s)
/ B Se iy m.u-: Sockiwe
E- o) &)
/ =4
Now chatchslorchmmits [4N
s

Sem Dnta

......dTm.. !/

muh‘

- Sawm b
,_,_,, JRT RTA OF T 4 e
d .ﬁ—}

- N le

Figure 8: The OMT method then decomposes a system fun ctionally, thisis a first step in many
structured analysis techniques.

Software Architecture in the OMT

Subsequent to the object modeling, dynamic modeling, and functional modeling, the overal
organization of the system into subsystems comprise the system’s architecture. Often the
overall architecture can be based upon previous architectures. Architectures typically organize
objects into a sequence of horizontal layers or and / or vertical partitions where prudent
organization limits the interactions between objects, increasing modularity. An example of
horizontal layering is the OSI-RM 7-layer computer communications protocol which creates
definitive interfaces. An example of vertical partitioning is virtual memory management and
process control in an operating system. Modularity is the key and the primary emphasis
‘behind the plethora of high level architectures in the literature, variety of analysis tools, as well
as classical programming practices.

11

The true test of modularity will be the reusability of components in future systems while
maintaining some degree (preferably a high degree) of downward compatibility with present
systems. The true test of a development architecture for configuration management will be its
ability to control change in afashion that does not stifle innovation.

Just as the evaluation of different objects within a system for reuse in future systems will be
accomplished at the beginning of a designproject by examining documentation, different high
level architectures should be evaluated by reviewing intended usc statements, reproducible test
cases, and a history of implementations.

Documentation Provided by Automated I'rgject Management Tools

in many instances, the embedded software and hardware in a system will require that a test bed
setup be provided to software developers prior to the complete system. Test beds arc
sometimes necessary for a hardware system’s proof of concept.

To maintain a direct correspondence between the variety of time dependent constraints imposed
upon UGV systems, objects within a design can be entered directly into project management
software . Maintaining project scheduling histories for components within a Configuration
Management's repository would not only focus attention upon the time constraints and the cost
cffectiveness of modules selected for a project but also on modules under development having
similar characteristics. Automated project management software provides many views of the
scheduling process such as the PERT chart, overlaid calendars, and filtering of schedules to
identify the usc of resources or to make calendars for different resource sharing.

Documentation and CASE tools

Our emphasis on the usc of CASE tools is stressed equally for reasons of software system
configuration, and documentation to allow reuse of code. It is specificaly not due to
productivity gains in the original development of the code. This is less than ideal admittedly,
but a reality for software development using existing CASE tools, as is evidenced in the
following quote: “At the Achieving Software Quality Dcbates, Don Reifer reported the results
of a survey on the effectiveness of CASE tools. e collected data from 45 companies in 10
industries representing over 100 million lines of code. Reifer found an average productivity gain
with CASE of 9 to 12 percent, but said that not a single firm could justify the cost of CASE
using the gains alonc as a reason (Myers, 1992). A second report has also concluded that CASE
tools have yet to meet the claims made for them in the popular press (Vessey, Jarvenpaa, and
Tractinsky, 1992).” [as cited form Code Complete - A practical handbook of software
construction]

I'rgject Life Cycle and Cost Reduction
The life cycle of a project consists of several phases, each phase overlapping other phases to
some extent. Good documentation during the design phase will contribute to the

implementation phase and later to the maintenance phase. The cost of this documentation to
support configuration management should not exceed its value however .

12

